Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial reactions and effects of fulvic acid complexation
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2018 (English)In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 483, p. 304-311Article in journal (Refereed) Published
Abstract [en]

This study investigated interfacial reactions between aqueous Ce(III) and two synthetic nanosized Mn (hydr-) oxides (manganite: gamma-MnOOH, and vernadite: delta-MnO2) in the absence and presence of Nordic Lake fulvic acid (NLFA) at circumneutral pH by batch experiments and cryogenic X-ray photoelectron spectroscopy (XPS). The surfaces of manganite and vernadite were negatively charged (XPS-derived loadings of (Na+ K)/Cl > 1) and loaded with 0.42-4.33 Ce ions nm(-2). Manganite stabilized Ce-oxidation states almost identical to those for vernadite (approximately 75% Ce(IV) and 25% Ce(III)), providing the first experimental evidence that also a Mn (III) phase (manganite) can act as an important scavenger for Ce(IV) and thus, contribute to the decoupling of Ce from its neighboring rare earth elements and the development of Ce anomaly. In contrast, when exposed to Ce (III)-NLFA complexes, the oxidation of Ce by these two Mn (hydr-) oxides was strongly suppressed, suggesting that the formation of Ce(III) complexes with fulvic acid can stabilize Ce(III) even in the presence of oxidative Mn-oxide surfaces. The experiments also showed that Ce(III) complexed with excess NLFA was nearly completely removed, pointing to a strong preferential sorption of Ce(III)-complexed NLFA over free NLFA. This finding suggests that the Ce(III)-NLFA complexes were most likely sorbed by their cation side, i.e. Ce(III) bridging between oxide groups on the Mn (hydr-) oxides and negatively-charged functional groups in NLFA. Hence, Ce(III) was in direct contact with the oxidative manganite and vernadite but despite that not oxidized. An implication is that in organic-rich environments there may be an absence of Ce(IV) and Ce anomaly despite otherwise favorable conditions for Ce(III) oxidation.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 483, p. 304-311
Keywords [en]
Cryogenic XPS, Manganite, Vernadite, Oxidative scavenging, Ce anomaly
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-138591DOI: 10.1016/j.chemgeo.2018.02.033ISI: 000429492300027OAI: oai:DiVA.org:umu-138591DiVA, id: diva2:2903
Funder
Swedish Research Council, 2016-03808Swedish Research Council, 2016-03808Swedish Research Council Formas, 2017-00766Available from: 2018-06-26 Created: 2018-06-26 Last updated: 2018-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Yu, ChangxunBoily, Jean-FrancoisShchukarev, Andrey
By organisation
Department of Chemistry
In the same journal
Chemical Geology
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 542 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf