Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Benelli, Giovanni
    et al.
    Maggi, Filippo
    Pavela, Roman
    Murugan, Kadarkarai
    Govindarajan, Marimuthu
    Vaseeharan, Baskaralingam
    Petrelli, Riccardo
    Cappellacci, Loredana
    Kumar, Suresh
    Hofer, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Youssefi, Mohammad Reza
    Alarfaj, Abdullah A.
    Hwang, Jiang-Shiou
    Higuchi, Akon
    Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects2018In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 25, no 11, p. 10184-10206Article, review/survey (Refereed)
    Abstract [en]

    The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.

  • 2. De Frenne, P.
    et al.
    Blondeel, H.
    Brunet, J.
    Caron, M. M.
    Chabrerie, O.
    Cougnon, M.
    Cousins, S. A. O.
    Decocq, G.
    Diekmann, M.
    Graae, B. J.
    Hanley, M. E.
    Heinken, T.
    Hermy, M.
    Kolb, A.
    Lenoir, J.
    Liira, J.
    Orczewska, A.
    Shevtsova, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Vanneste, T.
    Verheyen, K.
    Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa2018In: Plant Biology, ISSN 1435-8603, E-ISSN 1438-8677, Vol. 20, no 3, p. 619-626Article in journal (Refereed)
    Abstract [en]
    • Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants.
    • Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches.
    • By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content.
    • Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf