Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Barange, Deepak Kumar
    et al.
    Johnson, Magnus T
    Cairns, Andrew G
    Olsson, Roger
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Regio- and Stereoselective Alkylation of Pyridine-N-oxides: Synthesis of Substituted Piperidines and Pyridines.2016In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 18, no 24, p. 6228-6231Article in journal (Refereed)
    Abstract [en]

    Regio- and stereoselective addition of alkyl Grignard reagents to pyridine-N-oxides gave C2-alkylated N-hydroxy-1,2,5,6-tetrahydropyridines and trans-2,3-disubstituted N-hydroxy-1,2,5,6-tetrahydropyridines in good to excellent yields. These intermediates were aromatized or alternatively reduced in one-pot methodologies for efficient syntheses of alkylpyridines or piperidines, respectively. These reactions have a broad substrate scope and short reaction times.

  • 2.
    Egan Sjölander, Annika
    et al.
    Umeå University, Faculty of Arts, Department of culture and media studies.
    Nordlund, Annika
    Umeå University, Faculty of Social Sciences, Department of Psychology. Umeå University, Faculty of Social Sciences, Department of Geography and Economic History, Economic and social geography, Transportation Research Unit (TRUM).
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jansson, Stina
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    The multiple meanings of water: wastewater treatment and reuse seen from a communication perspective2018Conference paper (Refereed)
  • 3.
    Felten, Judith
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Vahala, Jorma
    Love, Jonathan
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Gorzsas, Andras
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ruggeberg, Markus
    Delhomme, Nicolas
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Lesniewska, Joanna
    Kangasjarvi, Jaakko
    Hvidsten, Torgeir R.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway.
    Mellerowicz, Ewa J.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Sundberg, Björn
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen2018In: New Phytologis, Vol. 218, no 3, p. 999-1014Article in journal (Refereed)
    Abstract [en]
    • The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation.
    • We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremulaxtremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees.
    • We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation.
    • G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.
  • 4. Good, James A D
    et al.
    Andersson, Christopher
    Hansen, Sabine
    Wall, Jessica
    Krishnan, K Syam
    Begum, Afshan
    Grundström, Christin
    Niemiec, Moritz S
    Vaitkevicius, Karolis
    Chorell, Erik
    Wittung-Stafshede, Pernilla
    Sauer, Uwe H
    Sauer-Eriksson, A Elisabeth
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Jörgen
    Attenuating Listeria monocytogenes Virulence by Targeting the Regulatory Protein PrfA.2016In: Cell chemical biology, ISSN 2451-9456, Vol. 23, no 3, p. 404-14, article id S2451-9456(16)30049-6Article in journal (Refereed)
    Abstract [en]

    The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes cellular uptake by reducing the expression of virulence genes. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA-binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds at two separate sites on the protein: one within a hydrophobic pocket or tunnel, located between the C- and N-terminal domains of PrfA, and the second in the vicinity of the DNA-binding helix-turn-helix motif. At both sites the compound interacts with residues important for PrfA activation and helix-turn-helix formation. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

  • 5. Hall, Michael
    et al.
    Grundström, Christin
    Begum, Afshan
    Lindberg, Mikael J
    Sauer, Uwe H
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Jörgen
    Sauer-Eriksson, A Elisabeth
    Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria.2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 51, p. 14733-14738Article in journal (Refereed)
    Abstract [en]

    Infection by the human bacterial pathogen Listeria monocytogenes is mainly controlled by the positive regulatory factor A (PrfA), a member of the Crp/Fnr family of transcriptional activators. Published data suggest that PrfA requires the binding of a cofactor for full activity, and it was recently proposed that glutathione (GSH) could fulfill this function. Here we report the crystal structures of PrfA in complex with GSH and in complex with GSH and its cognate DNA, the hly operator PrfA box motif. These structures reveal the structural basis for a GSH-mediated allosteric mode of activation of PrfA in the cytosol of the host cell. The crystal structure of PrfAWT in complex only with DNA confirms that PrfAWT can adopt a DNA binding-compatible structure without binding the GSH activator molecule. By binding to PrfA in the cytosol of the host cell, GSH induces the correct fold of the HTH motifs, thus priming the PrfA protein for DNA interaction.

  • 6.
    Klemencic, Marina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
    Funk, Christiane
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Type III metacaspases: calcium-dependent activity proposes new function for the p10 domain2018In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 218, no 3, p. 1179-1191Article in journal (Refereed)
    Abstract [en]
    • Metacaspases are a subgroup of caspase homologues represented in bacteria, algae and plants. Although type I and type II metacaspases are present in plants, recently discovered and uncharacterized type III metacaspases can only be found in algae which have undergone secondary endosymbiosis.
    • We analysed the expression levels of all 13 caspase homologues in the cryptophyte Guillardia theta invivo and biochemically characterized its only type III metacaspase, GtMC2, invitro.
    • Type III metacaspase GtMC2 was shown to be an endopeptidase with a preference for basic amino acids in the P1 position, which exhibited specific N-terminal proteolytic cleavage for full catalytic efficiency. Autolytic processing, as well as the activity of the mature enzyme, required the presence of calcium ions in low millimolar concentrations. In GtMC2, two calcium-binding sites were identified, one with a dissociation constant at low and the other at high micromolar concentrations.
    • We show high functional relatedness of type III metacaspases to type I metacaspases. Moreover, our data suggest that the low-affinity calcium-binding site is located in the p10 domain, which contains a well-conserved N-terminal region. This region can only be found in type I/II/III metacaspases, but is absent in calcium-independent caspase homologues.
  • 7. Shaffer, Carrie L
    et al.
    Good, James A D
    Kumar, Santosh
    Krishnan, K Syam
    Gaddy, Jennifer A
    Loh, John T
    Chappell, Joseph
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cover, Timothy L
    Hadjifrangiskou, Maria
    Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens.2016In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 7, no 2, p. e00221-16, article id e00221-16Article in journal (Refereed)
    Abstract [en]

    UNLABELLED: Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs.

    IMPORTANCE: Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.

  • 8. Tikhonov, K.
    et al.
    Shevela, D.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Klimov, V. V.
    Messinger, J.
    Quantification of bound bicarbonate in photosystem II#2018In: Photosynthetica (Praha), ISSN 0300-3604, E-ISSN 1573-9058, Vol. 56, no 1, p. 210-216Article in journal (Refereed)
    Abstract [en]

    In this study, we presented a new approach for quantification of bicarbonate (HCO3-) molecules bound to PSII. Our method, which is based on a combination of membrane-inlet mass spectrometry (MIMS) and O-18-labelling, excludes the possibility of "non-accounted" HCO3- by avoiding (1) the employment of formate for removal of HCO3- from PSII, and (2) the extremely low concentrations of HCO3-/CO2 during online MIMS measurements. By equilibration of PSII sample to ambient CO2 concentration of dissolved CO2/HCO3-, the method ensures that all physiological binding sites are saturated before analysis. With this approach, we determined that in spinach PSII membrane fragments 1.1 +/- 0.1 HCO3- are bound per PSII reaction center, while none was bound to isolated PsbO protein. Our present results confirmed that PSII binds one HCO3- molecule as ligand to the non-heme iron of PSII, while unbound HCO3- optimizes the water-splitting reactions by acting as a mobile proton shuttle.

  • 9. Yu, Changxun
    et al.
    Boily, Jean-Francois
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Shchukarev, Andrey
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Drake, Henrik
    Song, Zhaoliang
    Hogmalm, K. Johan
    Astrom, Mats E.
    A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial reactions and effects of fulvic acid complexation2018In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 483, p. 304-311Article in journal (Refereed)
    Abstract [en]

    This study investigated interfacial reactions between aqueous Ce(III) and two synthetic nanosized Mn (hydr-) oxides (manganite: gamma-MnOOH, and vernadite: delta-MnO2) in the absence and presence of Nordic Lake fulvic acid (NLFA) at circumneutral pH by batch experiments and cryogenic X-ray photoelectron spectroscopy (XPS). The surfaces of manganite and vernadite were negatively charged (XPS-derived loadings of (Na+ K)/Cl > 1) and loaded with 0.42-4.33 Ce ions nm(-2). Manganite stabilized Ce-oxidation states almost identical to those for vernadite (approximately 75% Ce(IV) and 25% Ce(III)), providing the first experimental evidence that also a Mn (III) phase (manganite) can act as an important scavenger for Ce(IV) and thus, contribute to the decoupling of Ce from its neighboring rare earth elements and the development of Ce anomaly. In contrast, when exposed to Ce (III)-NLFA complexes, the oxidation of Ce by these two Mn (hydr-) oxides was strongly suppressed, suggesting that the formation of Ce(III) complexes with fulvic acid can stabilize Ce(III) even in the presence of oxidative Mn-oxide surfaces. The experiments also showed that Ce(III) complexed with excess NLFA was nearly completely removed, pointing to a strong preferential sorption of Ce(III)-complexed NLFA over free NLFA. This finding suggests that the Ce(III)-NLFA complexes were most likely sorbed by their cation side, i.e. Ce(III) bridging between oxide groups on the Mn (hydr-) oxides and negatively-charged functional groups in NLFA. Hence, Ce(III) was in direct contact with the oxidative manganite and vernadite but despite that not oxidized. An implication is that in organic-rich environments there may be an absence of Ce(IV) and Ce anomaly despite otherwise favorable conditions for Ce(III) oxidation.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf