Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Freidovich, Leonid B.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Shiriaev, Anton S.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
    Transverse linearization for underactuated nonholonomic mechanical systems with application to orbital stabilization2012In: Distributed Decision Making and Control, Springer Verlag , 2012, p. 245-258Chapter in book (Refereed)
    Abstract [en]

    We consider a class of mechanical systems with an arbitrary number of passive (nonactuated) degrees of freedom, which are subject to a set of nonholonomic constraints. We assume that the challenging problem of motion planning is solved giving rise to a feasible desired periodic trajectory. Our goal is either to analyze orbital stability of this trajectory with a given time-independent feedback control law or to design a stabilizing controller. We extend our previous work done for mechanical systems without nonholonomic constraints. The main contribution is an analytical method for computing coefficients of a linear reduced-order control system, solutions of which approximate dynamics that is transversal to the preplanned trajectory. This linear system is shown to be useful for stability analysis and for design of feedback controllers orbitally, exponentially stabilizing forced periodic motions in nonholonomic mechanical systems.We illustrate our approach on a standard benchmark example.

  • 2.
    Starlight, Rocket
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Solar, Stellar
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Dark matter and bright galaxies2023In: Space science, ISSN xxxx-xxxx, Vol. 23, no 2, article id 714Article in journal (Refereed)
    Abstract [en]

    There is no strife, no prejudice, no national conflict in outer space as yet. Its hazards are hostile to us all. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation many never come again. But why, some say, the moon? Why choose this as our goal? And they may well ask why climb the highest mountain?

    We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

    Download full text (pdf)
    fulltext
  • 3. Wang, Zeguo
    et al.
    Freidovich, Leonid B.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Zhang, Honghua
    Periodic motion planning and control for underactuated mechanical systems2018In: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 91, no 6, p. 1350-1362Article in journal (Refereed)
    Abstract [en]

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • Vancouver
  • biomed-central
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf